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electron-phonon collisions is smaller than 1.4 X 10~4 cm. 
As would be expected, the zero-temperature energy gap 
of the bulk material is not affected by an external 
magnetic field which is much smaller than the critical 
field. 

I. INTRODUCTION 

THE change in energy caused by an arbitrary strain 
is calculated here for states of high symmetry near 

the top of the valence band and the bottom of the con­
duction band in Si. The experimental studies of these 
effects can be grouped into three classes. (1) The four­
fold degenerate T25' (j= f) level at the top of the valence 
band is split into two twofold levels by a general uni­
axial strain. Hensel and Feher1 have measured the 
cyclotron-resonance-effective masses of holes at the top 
of the valence band in Si as a function of strain and, 
thus, were able to calculate the strain-induced splitting 
of these levels. In the first paper of this series2 (hereafter 
called I) the theory of the strain splitting of the top of 
the valence band is presented, and three other experi­
ments performed on the holes to measure this splitting 
are briefly discussed. (2) Donor impurity electron wave 
functions in Si consist of linear combinations of con­
duction electron wave functions in the six valleys along 
the equivalent [100] directions in k space. Because of 
central cell corrections to the effective mass formalism3 

(chemical shifts), that combination of conduction-
electron wave functions which adds in phase at the 
impurity site lies lowest in energy. When a uniaxial 
strain is applied along one of the valley directions, the 
intervalley degeneracy is destroyed and the lower lying 
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valleys contribute a greater proportion to the impurity 
wave function. Thus, by measuring the amplitude of the 
wave function at the impurity site as a function of 
strain, Wilson and Feher4 (by means of the hyperfine 
splitting of electron-spin-resonance lines in strained Si) 
measured the intervalley splitting. Similarly, a measure­
ment of the strain dependence of the ionization energy 
of the donor electrons5 leads to the intervalley strain 
splitting. (3) Paul and co-workers6""8 have measured the 
shifts in the optical absorption peaks and, hence, in 
their associated energy gaps as a function of hydrostatic 
pressure. Unfortunately, most of the data is for Ge but 
the pressure dependence of any particular gap seems to 
be fairly constant among all the diamond and zinc-
blende semiconductors.9 Paul et al. have measured the 
pressure dependence of the indirect (r25' — Ai) gap in Si 
both by conductivity measurements and by direct ob­
servation of the shift of the indirect-transition edge. 
Philipp, Dash, and Ehrenreich10 have attempted to map 
the motion of the band structure of Si under a bending 
type of strain which had both a hydrostatic and a uni­
axial (either [100] or [111]) component. In view of the 
complexity of the behavior of the band structure under 
such a strain (see Sec. II) and the breadth of the re-

4 D. K. Wilson and G. Feher, Phys. Rev. 124, 1068 (1961). 
6 H. Fritzsche, Phys. Rev. 115, 336 (1959). 
6 W. Paul, J. Phys. Chem. Solids 8, 196 (1959). 
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and 102 (1958). 
8 M . Cardona and W. Paul. J. Phys. Chem. Solids 17, 138 

(1960). 
9 W. Paul. J. Appl. Phys. 32, 2082 (1961). 
10 H. R. Philipp, W. Dash, and E. Ehrenreich, Phys. Rev. 127, 

762, (1962), 
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Using a self-consistent perturbation theory developed in the first two papers of this series we have calcu­
lated the deformation potentials for a general strain for points of high symmetry (r , X, and L) in the 
conduction and valence bands of Si. We compare our calculated results with experimental values for (1) 
hydrostatic-pressure dependence of various energy gaps, (2) uniaxial-strain dependence of the splitting of 
the fourfold degenerate level at the top of the valence band, and (3) uniaxial strain dependence of the 
splitting of the degeneracy between equivalent valleys at the bottom of the conduction band. The agreement 
between theory and experiment ranges from fair to good. 
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flection peaks, it is not too surprising that they were 
unsuccessful. 

The absolute shift of the bottom of the conduction 
band or top of the valence band under hydrostatic pres­
sure cannot be measured directly. These are of interest 
because each represents one of the components of the 
electron-phonon or hole-phonon coupling tensor. Herring 
et al.n have used this fact to obtain an experimental 
value for the conduction band shift. Unfortunately, the 
relaxation times required for Herring's theory vary 
markedly depending on whether they are obtained from 
transport measurements or cyclotron resonance.12 (See 
the second paper in this series,13 hereafter called II.) 

In the next section we give a brief introduction to the 
techniques of the calculation (which are discussed 
thoroughly in I and II) and give a rather complete de­
scription of the response of the T, X, and L energy 
levels to a general strain. In the last section we compare 
the results of this calculation with all the available ex­
perimental data. 

II. CALCULATIONS 

We write the Hamiltonian for the electrons in the un­
strained crystal as a sum of three terms. 

W = WKB+WPB+WR, (1) 

where the 3CR is a nonlocal potential corresponding 
strictly to the orthogonalization terms in an orthogonal-
ized plane wave14 calculation. In I we showed that the 
perturbation Hamiltonian due to a dilationless uniaxial 
strain is a sum of five terms. 

W'=MKB+WPB'+MR'+WPBB'+SWRB'. (2) 

The first three terms would be all of the perturbation if 
the structure factor remained unchanged under the 
strain. Under a uniaxial strain along one of the [100] 
directions the structure factor remains unchanged and 
the "bond bending" terms are zero. But if the uniaxial 
strain is applied in a [111] or [110] direction, inner dis­
placements may occur and the relative position of the 
two atoms in the unit cell is not uniquely determined. 
The case where the atoms move to keep all nearest-
neighbor bond lengths unchanged corresponds to f = 1. 
f=0 corresponds to intracellular distances transform­
ing according to the macroscopic strain tensor and the 
structure factor remaining unchanged. In I, we claimed 
that f = 1 was required to obtain the experimental1 ratio 
of [100] and [111] r25' deformation potential con­
stants. The present computer calculation has unearthed 
several errors in the original hand calculation and the 
value required to fit the experimental ratio is £=0.81. 

• C. Herring and E. Vogt, Phys. Rev. 101, 944 (1956); and C. 
Herring, T. H. Geballe, and J. E. Kunzler, Bell System Tech. J. 
38,657(1959). 

12 D. M. S. Bagguley, D. W. Flaxen, and R. A. Stradling, Phys. 
Letters 1, 111 (1962). 

13 L. Kleinman, Phys. Rev. 130, 2283 (1963). 
14 C. Herring, Phys. Rev. 57, 1169 (1940). 

Following a suggestion in I, Segmuller15 has measured f 
for Ge using x-ray diffraction; he finds f=0.7. A first-
principles calculation of f is underway16 but since, like 
the elastic constants, it is second order in the strain, the 
accuracy of the calculation should not be expected to be 
as good as the accuracy of the present deformation 
potential calculation. In order to show the sensitivity 
of the various levels to inner displacements, we give the 
deformation potentials for both f=0.7 and f =0.81. 

In II, we wrote the Hamiltonian for a unit hydrostatic 
strain perturbation 

W' = KKB'+3CpB+WR+6Vm, (3) 

where Fooo consists of core-valence exchange, valence-
valence exchange, and valence-valence correlation terms 
as well as a large many-electron, many-ion Coulomb 
term. All these terms except for the valence-valence ex­
change are either independent of energy level or are 
very small so that they are of no interest when discussing 
relative shifts between energy levels. In II, the valence-
valence exchange term was calculated for r25', the top 
of the valence band, by assuming it to be the same as the 
exchange energy of a free electron at the top of the Fermi 
sea. Phillips and Kleinman17 have calculated matrix ele­
ments of the screened Hartree-Fock exchange operator 
from which the screened energy of the states r25', r i5 , 
and Xi(2) may be estimated (in their approximation 
only the screened part of the exchange energy varied 
from state to state). One finds the screened exchange 
energy of Xi(2) and r i 5 to be 20 and 32% less than 
that of r25' (£Screenedexr25/=— 0.326 Ry). However, 
^exr25,= -1.221rs~

1=-0.61 Ry, so that the total ex­
change energy of Xi(2) and Tn is only about 11 and 17% 
less than that of r25'. This drop in exchange energy for 
states just above the energy gap corresponds to the 
infinity in dEex/dk at k = KF in a free-electron gas. Be­
cause the percentages just quoted are only approxi­
mate, we take the valence-valence exchange contribu-

6 77Tf1 (111) k = (OOO) 7TQ~* (200) 

FIG. 1. The Si band structure taken from J. C. 
Phillips, Phys. Rev. 125, 1931 (1962). 

15 A. Segmuller, Phys. Letters 4, 227 (1963). 
1 6 1 . Goroff and L. Kleinman (to be published). 
17 J. C. Phillips and L. Kleinman, Phys. Rev. 128, 2098 (1962). 
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TABLE I. Listed is the calculated change in energy (in eV/S) of each level under the indicated strains. The levels, whose deformation 
potential constants are preceded by a ± , are split under the indicated strain. The L$ and Lv levels are split by spin-orbit coupling in 
addition to the strain splitting. The linear relation given above for the Ls and Lv splitting hold only when Astrain5j>Aso. [See Eq. (5).] 

\ S t r a i n tensor 
L e v e l \ 

rv 
ru (i=4) 
r» (i=f) 
r v (i=4) 
r25< U=i) 
U» ([ill]) 
U» ([ill]) 
Z,i<» ([111] or [111]) 
U [111] 
U [HI] 
U ([111] or [111]) 

Lv [ H I ] 
Lv [ H i ] 
Lv ( [ H i ] or [111]) 
Xi<*> ([100]) 
Xx® ([010] or [001]) 
X4 ([100]) 
X4 ([010] or [100]) 

S/100\ 
- 010) 
3\ooiy 
-10 .7 
-3 .44 
-3 .44 
-2 .09 
-2 .09 
-6 .20 
-6 .20 
-6 .20 
-2 .86 
-2 .86 
-2 .86 
-1 .74 
-1 .74 
-1 .74 
-1 .80 
-1 .80 

0.58 
0.58 

28 /1 0 0 \ 
- ( o - i o) 
3 \ 0 0 - i / 

0 
0 

±1.10 
0 

±2.49 
0 
0 
0 

±4.37 
±4.37 
±4.37 
±4.87 
±4.87 
±4.87 

6.38 
-3 .19 

5.26 
-2 .63 

£ = 0.81 

S /011 \ 
- 1 0 1 ) 
3 \110 / 

0 
0 

±2.92 
0 

±3.28 
11.4 

-3 .80 
-3 .80 

4.77 
-1.59±8.75 
-1.59±8.75 

6.25 
-2.08±2.92 
-2.08±2.92 

±5.23 
±5.23 
±3.32 
±3.32 

r=o.7 
8/011X 

- ( 1 0 1 ) 3\110/ 

0 
0 

±3.18 
0 

±2.79 
11.5 

~3M 
-3 .83 

4.53 
-1.51±8.48 
-1.51±8.48 

6.10 
-2.03±2.69 
-2.03±2.69 

±5.23 
±5.23 
±3.32 
±3.32 

r=o.8i 
/ooo\ 

8 001 ) 
\oio/ 

0 
0 

±2.92 
0 

±3.28 
11.4 
11.4 

-11 .4 
4.77±13.12 
4.77±13.12 

-4.77±13.12 
6.25± 4.38 
6.25± 4.38 

- 6 . 2 5 ± 4.38 
±15.7 

0 
±9.97 

0 

r=o.7 
/000\ 

8 001 ) 
Voio/ 

0 
0 

±3.18 
0 

±2.79 
11.5 
11.5 

-11.5 
4.53±12.72 
4.53±12.72 

-4.53±12.72 
6.10± 4.03 
6.10± 4.03 

- 6 . 1 0 ± 4.03 
±15.7 

0 
±9.97 

0 

tion to 5Fooo for all states just above the gap to be 15% 
less than that for all states just below the gap. Thus, 
from Table I I of I I : 5F0ooval = 0.929 Ry per unit dila­
tion; 6Fooocond= 0.897 Ry per unit dilation. With these 
and the 3C"s for a general strain we may as in I and I I 
calculate the effect of any strain on the eigenvalues of 
the unstrained crystal Hamiltonian. 

The various states at T, X, and L in the Brillouin zone 
have from one (e.g., IV) to as many as four (e.g., Lv) 
independent deformation potential constants. We shall 
first consider the states at L. We have calculated the 
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FIG. 2. The splitting of a twofold degenerate L level (e.g., 
Z3 or Lv) under a [111] strain or a yz shear, a and b are two 
independent deformation potential constants. 

deformation potentials for the state Lv in the valence 
band and for the states L\ and L3 in the conduction 
band. (See Fig. 1.) The state L\ is nondegenerate within 
a given [111] valley. There are, however, four equiv­
alent [111] valleys. L\ has two independent deforma­
tion potential constants, one corresponding to a hy­
drostatic strain, and one corresponding to a [111] uni­
axial strain. The effect of a dilationless [111] strain on 
the Li valleys is to move the [111] valley a certain 
amount and to move the [ H I ] , [111], and [111] each 
one third that amount in the opposite direction, the 
center of gravity of the four equivalent states remaining 
unchanged. The states L^ and L% would be twofold de­
generate, were it not for spin-orbit splitting. If one neg­
lects spin-orbit splitting, each of these {L% and Lv) 
has four independent deformation-potential constants. 
In addition to the two which L\ boasts, there are two 
independent strains which split the degeneracy, a uni­
axial [100] strain and a yz shear strain. These strains 
destroy the threefold rotation axes which caused the de­
generacies. A [111] strain does not destroy the three­
fold rotation axis in the [111] direction, but does destroy 
those axes along the [111], [111], and [111] direc­
tions, thereby splitting the L3 and Lv degeneracies in 
those valleys. However, this splitting is not independent 
of that caused by a yz shear since a dilationless [111] 
strain tensor may be written 

S [ l l l > 
foul 
101 
110 

«i 
fo i i] 
1 0 - 1 
1-1 0 

+i 
foool 
001 
[oio 

= -5ClI l ]+ |S0«) . (4) 

file:///Strain
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Thus, since <§[111] causes no splitting within a [111] 
valley, we see that £[111] splits Z,3 and Lv in the [111] 
valley f as much as a (yz) shear. A yz shear strain shifts 
both the [111] and [111] valleys as much as a [111] 
strain shifts a [111] valley, while under a yz shear 
strain, the [111] and [111] valleys move equally in the 
opposite direction. Furthermore, the intervalley de­
generacies are split identically in the four valleys (see 
Fig. 2). The effect of a [111] strain is also shown in Fig. 
2. On the other hand, a [100] strain cannot distinguish 
between L valleys and only splits the intravalley de­
generacies. The total strain plus spin-orbit splitting is 
given by18 

A=(A s o 2+A s t r a i n 2) i /2 , (5) 

where Aso is the spin-orbit splitting in the absence 
of strain and vice versa. Thus when Aso^>Astrain, 
A«Aso+Astrain2/2Aso and the strain splitting becomes 
a second-order effect. Similarly, the spin-orbit splitting 
becomes a second-order effect when Astrain^>Aso. The 
shear strain intravalley deformation potential is rather 
large for Lz (see Table I) and Astrain=0.05 eV should be 
attainable with large strains. According to Phillips and 
Liu19, in Ge Ago1,3'=0.18 eV, while because of interfer­
ence effects ASO

L3=0.01 eV. Presumably the correspond­
ing splittings in Si are an order of magnitude smaller. 
Thus both limits AS0^>Astrain and Astrain^>>ASo are of prac­
tical interest. 

All X levels in a diamond-structure crystal are forced 
to be twofold degenerate by the existence of the glide 
symmetry operations. Specifically, an x direction X 
level is split if both the xy and xz glide planes are de­
stroyed. These may be destroyed by a yz shear. While a 
yz shear splits the [100] X level, it does not split the 
[010] or [001] levels and does not shift the X valleys 
with respect to one another. A [111] strain, being a sum 
of \ of each of the three shears, splits all levels § as 
much as a yz shear splits a [100] level. A [100] strain 
moves the [100] valley up and moves both the [010] 
and [001] valleys down by half as much without split­
ting the intravalley degeneracies. 

The T2' level, having the full cubic symmetry and 
being only spin degenerate is affected only by the hydro­
static component of an applied strain. Similarly (since 
for all but the largest strains in Si, Aso^Astram)? the 
i = 2 spin-orbit split T25' and T15 levels are described by 
a single hydrostatic deformation potential. The j=f T2^ 
and Ti5 levels are fourfold degenerate. These may be 
split into | mj | = f and \tn,j\ = J twofold degenerate 
levels by either a [100] or [111] strain. Each of these 

18 Consider the [111] valley and a shear strain (yz) or a uni­
axial strain (xx). The degenerate transverse p eigenfunctions with­
out the spin-orbit or strain perturbations may be chosen to have 
(x—y) and (x-{-y—2z) symmetry. These are obviously diagonal 
under perturbations of (yz) or (xx) symmetry while they are off 
diagonal under the spin-orbit perturbation. Equation (5) follows 
directly from diagonalizing the perturbation matrix. 

19 J. C. Phillips and L. Liu, Phys. Rev. Letters 8, 94 (1962); and 
L. Liu, Phys. Rev. 126, 1317 (1962). 

strains gives an independent deformation potential 
constant. A more thorough discussion of the T2v de­
formation potentials is given in I. 

III. RESULTS AND CONCLUSIONS 

The calculations were performed using the complete 
wave functions of Kleinman and Phillips20 which are ex­
panded in plane waves. In the hand calculations of I 
and I I , many terms involving small coefficients of the 
plane waves were neglected. Thus, the present r25' hy­
drostatic deformation potential is about 10% larger 
than the hand calculation. On the other hand, the two 
uniaxial T25' deformation potentials converged in the 
previous calculation to within a fraction of a percent. 
There is much cancellation between positive and nega­
tive terms; this takes place among 3CKE\ 3CPE\ and 
3CR and causes the rapid convergence in the uniaxial 
strain case. In the hydrostatic strain case, most of the 
cancellation occurs between SFooo on the one hand and 
^KEfJr^PEfJr^R on the other; the poorer convergence 
is due to the smallness of the cancellation among 3CKE', 
3CPE', and 3CR. In Table I we list the deformation po­
tentials in units of eV per unit strain for all the levels 
discussed in the previous section under hydrostatic, 
[100], [111], and [011] strains. The results for the 
latter two strains are listed for the experimental value15 

of the bond bending parameter (f=0.7) as well as for 
the value that gives the experimental ratio of the two 
T25' uniaxial strain deformation potential constants 
(f=0.81). Because of the calculational errors in / , we 
list in Table I I Du and Du> where | %DU | is the splitting 
of T25' per unit [100] uniaxial strain and | %Du

f | plays 
the same role for [111] strain. The comparison with the 
experimental values1 is worsened, but considering the 
large cancellation among the various terms in the 
Hamiltonian21 and the uncertainties in the unperturbed 
wave functions, the agreement should be considered 
satisfactory. We also list the experimental values for 
Ge since this is the only case of a degeneracy splitting 
which has been measured in both materials. 

TABLE II. Comparison of experimental values of Du and Du' 
(in eV) ina Si andb Ge with two calculated values for Si. The choice 
of f = 0.81 for one of these is to make the calculated DU'DU agree 
with the experimental Si value; £" = 0.7 is the value in Ge obtained 
from x-ray scattering.0 

Dur 
Du'/Du 

Si exp. 

2.04 
2.68 
1.31 

Ge exp. 

3.15 
6.06 
1.92 

r=o.7 
3.74 
4.19 
1.12 

r=o.si 

3.74 
4.92 
1.31 

a Ref. 1. 
b J . J . Hall, Phys . Rev . 128, 68 (1962). 
° Ref. 15. 

20 L. Kleinman and J. C. Phillips, Phys. Rev. 118, 1153 (1960). 
21 The reader is referred to I and II to obtain an idea of the order 

of magnitude of the various contributions to the deformation 
potentials. 
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TABLE II I . Calculated and experimental values of S« in the 
notation of Herring and Vogt.a This is f the deformation potential 
listed in Table I for the shift of [100] valley under a [100] strain 
and is equal to that listed in Table I for the shift of a [111] valley 
under a [111] strain. The experimental value in Si is determined 
for the valley which is near but not exactly at the symmetry 
point X. 

Experimental Theoretical 

Yx 11,»» 8.3d (Si) 9.57 (Si) 
Lx 19 (Ge)° 11.4 (Si) 

»Ref. 11. 
b Ref. 4. 
o Ref. 5. 
d J. E. Aubrey, W. Gubler, T. Henningsen, and S. H. Koenig, Phys. Rev. 

130, 1667 (1963). 

In Table III we compare experimental and theoretical 
values of Sw (notation of Herring and Vogt11) which de­
scribes the shift between a conduction band valley and 
its equivalent valleys when a uniaxial strain is applied 
along its major axis. In Si the valleys lie along [100] 
near but not at the symmetry point X so that the good 
agreement between theory and experiment may be 
somewhat fortuitous. Judging from the experimental 
differences between Ge and Si for the splitting of I V , 
(Table II), we should expect only order of magnitude 
agreement between the theoretical value of Sw for L\ 
in Si and its experimental value in Ge. The agreement is 
therefore quite satisfactory. 

In Table IV we compare calculated and experimental 
values of various gap dependencies in units of eV per 
106 atm. Unfortunately, most of the data is for Ge, how-

TABLE IV. Comparison of experimental and calculated gap 
dependencies in units of eV per 106-atm hydrostatic pressure. 

Experimental Calculated (Si) 

£i-r2 5 ' 5.0 Gea 4.27 
r 2 ' - r 2 5 ' 12.0 Gea 8.93 
Ai-r25 ' -1 .5Si a - b -0.30° 
Ly-Lv 7.5 Ged 4.62 

* Ref. 6. 
b Ref. 7. 
c The calculated gap is Xi-Tw. 
d R. Zallen, W. Paul, and J. Tauc, Bull. Am. Phys. Soc. 7, 185 (1962). 

ever, the gap dependencies as a function of pressure are 
known to be similar for all the diamond and zincblende 
crystals.9 The percentage error between the experi­
mental Ai—T25' and the theoretical X\—r25> gap de­
pendencies is quite large but this is because of the ex­
tremely small value of the gap dependence. Since the 
gap dependence is small because of extremely good 
cancellation between much larger absolute shifts of Xi 
and T25' and not because the individual shifts are small, 
this large percentage error is to be expected. The over­
all agreement is seen to be quite good. 

Note added in proof, R. Zallen and W. Paul (private 
communication), measuring the reflectivity of Si under 
hydrostatic pressure, have obtained the following gaps: 

Er=3.38+5.2P, 
EX=4.4+2.9P, 

where E is in eV and P in 106 atm. The latter gap, which 
they identify with an X±-~X\ transition, has a pressure 
coefficient in good agreement with our value of 2.4. The 
first gap, which they identify with a F25' — Ti5 transition, 
has a pressure coefficient in sharp disagreement with our 
value of 1.4. We feel that this throws considerable doubt 
on the identification of this level. One is tempted to 
identify the 3.38-eV reflection peak with the L\—Lv 

transition for which we have a calculated pressure co­
efficient of 4.5 eV/106 atm. 

The largest errors in our calculated deformation 
potentials are due to errors in the undeformed crystal 
wave functions and to the approximations made in cal­
culating the strain dependence of the self-consistent 
valence electron potential (see I and II). Crystal po­
tentials can be obtained which yield energy bands in 
excellent agreement with experiment; presumably the 
wave functions will be just as good. These should be 
available in the immediate future.22 A better calculation 
of the strain dependence of the self-consistent potential 
would require essentially a complete self-consistent band 
calculation for the strained crystal. We think that with 
these improvements, it should be possible to calculate 
deformation potentials accurate to within 10%. 

22 F. Quelle (private communication) and F. Herman (private 
communication). 


